2018 Consumer Confidence Report Data RIB LAKE WATERWORKS, PWS ID: 86101268 We are pleased to present to you this year's Annual Water Quality Report for the Village of Rib Lake. This report is designed to inform you about the quality water and services we deliver to you every day. Our goal is to provide you with a safe and dependable supply of drinking water. # Water System Information If you would like to know more about the information contained in this report, please contact Dan Koehler at (715) 869-2811. # Opportunity for input on decisions affecting your water quality The Village Board meets the 2nd Wednesday of each month at 6:30 p.m. in the Community Meeting Room at 655 Pearl Street Rib Lake, WI 54470. ### **Health Information** Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's safe drinking water hotline (800-426-4791). Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune systems disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbial contaminants are available from the Environmental Protection Agency's safe drinking water hotline (800-426-4791). ## Source(s) of Water | Source ID | Source | Depth (in feet) | Status | |-----------|-------------|-----------------|--------| | 1 | Groundwater | 52 | Active | | 2 | Groundwater | 45 | Active | To obtain a summary of the source water assessment please contact, Dan Koehler at (715) 869-2811. # **Educational Information** The sources of drinking water, both tap water and bottled water, include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water include: - Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations and wildlife. - Inorganic contaminants, such as salts and metals, which can be naturally- occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining or farming. - Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff and residential uses. - Organic chemical contaminants, including synthetic and volatile organic chemicals, which are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff and septic systems. - Radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities. In order to ensure that tap water is safe to drink, EPA prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water, which shall provide the same protection for public health. #### **Definitions** | Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow. Level 1 Assessment Assessment A Level 1 assessment is a study of the water system to identify potential problems and determine, if possible, why total coliform bacteria have been found in our water system. A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine, if possible, why an E. coli MCL violation has occurred or why total coliform bacteria have been found in our water system, or both, on multiple occasions. Maximum Contaminant Level: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology. MCLG Maximum Contaminant Level Goal: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety. MFL Million fibers per liter Maximum residual disinfectant level: The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants. Maximum residual disinfectant level goal: The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants. mrem/year millirems per year (a measure of radiation absorbed by the body) NTU Nephelometric Turbidity Units | Term | Definition | |--|-------|---| | A Level 1 assessment is a study of the water system to identify potential problems and determine, if possible, why total coliform bacteria have been found in our water system. A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine, if possible, why an E. coli MCL violation has occurred or why total coliform bacteria have been found in our water system, or both, on multiple occasions. Maximum Contaminant Level: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology. MCLG Maximum Contaminant Level Goal: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety. MRDL MRDL MRDL MRDL MRDLG MRD | AL | Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow. | | A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine, if possible, why an E. coli MCL violation has occurred or why total coliform bacteria have been found in our water system, or both, on multiple occasions. MCL Maximum Contaminant Level: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology. MCLG Maximum Contaminant Level Goal: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety. MFL million fibers per liter Maximum residual disinfectant level: The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants. Maximum residual disinfectant level goal: The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants. mrem/year millirems per year (a measure of radiation absorbed by the body) | | A Level 1 assessment is a study of the water system to identify potential problems and determine, if possible, why total coliform bacteria have been found in our water system. | | MCLG drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology. MCLG Maximum Contaminant Level Goal: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety. MFL million fibers per liter Maximum residual disinfectant level: The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants. Maximum residual disinfectant level goal: The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants. mrem/year millirems per year (a measure of radiation absorbed by the body) | | A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine, if possible, why an E. coli MCL violation has occurred or why total coliform bacteria have been found in our water system, or both, on multiple | | MFL million fibers per liter Maximum residual disinfectant level: The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants. MRDLG MRD | MCL | drinking water. MCLs are set as close to the MCLGs as feasible using the best available | | MRDL million fibers per liter Maximum residual disinfectant level: The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants. Maximum residual disinfectant level goal: The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants. mrem/year millirems per year (a measure of radiation absorbed by the body) | MCLG | Maximum Contaminant Level Goal: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety | | MRDLG MRDLG MRDLG Maximum residual disinfectant level goal: The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants. mrem/year millirems per year (a measure of radiation absorbed by the body) | MFL | million fibers per liter | | mrem/year willcit there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants. millirems per year (a measure of radiation absorbed by the body) | MRDL | drinking water. There is convincing evidence that addition of a disinfectant is necessary for | | respectively (a measure of radiation absorbed by the body) | MRDLG | which there is no known or expected risk to health. MRDLGs do not reflect the benefits of | | NTU Nephelometric Turbidity Units | | millirems per year (a measure of radiation absorbed by the body) | | | NTU | Nephelometric Turbidity Units | | Term | Definition | |-------|--| | pCi/l | picocuries per liter (a measure of radioactivity) | | ppm | parts per million, or milligrams per liter (mg/l) | | ppb | parts per billion, or micrograms per liter (ug/l) | | ppt | parts per trillion, or nanograms per liter | | ppq | parts per quadrillion, or picograms per liter | | TCR | Total Coliform Rule | | TT | Treatment Technique: A required process intended to reduce the level of a contaminant in drinking water. | ## **Detected Contaminants** Your water was tested for many contaminants last year. We are allowed to monitor for some contaminants less frequently than once a year. The following tables list only those contaminants which were detected in your water. If a contaminant was detected last year, it will appear in the following tables without a sample date. If the contaminant was not monitored last year, but was detected within the last 5 years, it will appear in the tables below along with the sample date. #### **Disinfection Byproducts** | Contaminant
(units) | Site | MCL | MCLG | Level
Found | Range | Sample Date
(if prior to
2018) | Violation | Typical Source of
Contaminant | |------------------------|------|-----|------|----------------|-------|--------------------------------------|-----------|---| | HAA5 (ppb) | D-2 | 60 | 60 | 0 | 0 | | No | By-product of drinking water chlorination | | TTHM (ppb) | D-2 | 80 | 0 | 0.0 | 0.0 | | No | By-product of drinking water chlorination | #### **Inorganic Contaminants** | Contaminant (units) | Site | MCL | MCLG | Level
Found | Range | Sample
Date (if
prior to
2018) | Violation | Typical Source of
Contaminant | |---------------------|------|-----|------|----------------|-------|---|-----------|--| | ARSENIC
(ppb) | | 10 | n/a | 3 | 3 | 6/13/2017 | No | Erosion of natural deposits;
Runoff from orchards;
Runoff from glass and
electronics production
wastes | | BARIUM
(ppm) | | 2 | 2 | 0.034 | 0.034 | 6/13/2017 | | Discharge of drilling
wastes; Discharge from
metal refineries; Erosion of
natural deposits | | FLUORIDE
(ppm) | | 4 | 4 | 0.1 | 0.1 | 6/13/2017 | No | Erosion of natural deposits;
Water additive which
promotes strong teeth; | | Contaminant (units) | Site | MCL | MCLG | Level
Found | Range | Sample
Date (if
prior to
2018) | Violation | Typical Source of
Contaminant | |--------------------------|------|-----|------|----------------|--------|---|-----------|--| | | | | | | | | | Discharge from fertilizer and aluminum factories | | NICKEL (ppb) | | 100 | | 0.6300 | 0.6300 | 6/13/2017 | | Nickel occurs naturally in soils, ground water and surface waters and is often used in electroplating, stainless steel and alloy products. | | NITRATE
(N03-N) (ppm) | | 10 | 10 | 0.17 | 0.17 | | No | Runoff from fertilizer use;
Leaching from septic tanks,
sewage; Erosion of natural
deposits | | SODIUM
(ppm) | 1 | n/a | n/a | 4.60 | 4.60 | 6/13/2017 | | n/a | | Contaminant (units) | Action
Level | MCLG | 90th
Percentile
Level
Found | # of
Results | Sample
Date (if
prior to
2018) | Violation | Typical Source of
Contaminant | |---------------------|-----------------|------|--------------------------------------|--|---|-----------|---| | COPPER (ppm) | AL=1.3 | 1.3 | 0.4200 | 0 of 10 results were above the action level. | 8/22/2017 | No | Corrosion of
household plumbing
systems; Erosion of
natural deposits;
Leaching from wood
preservatives | | LEAD (ppb) | AL=15 | 0 | 0.68 | 0 of 10 results were above the action level. | 8/22/2017 | No | Corrosion of household plumbing systems; Erosion of natural deposits | ## **Radioactive Contaminants** | Contaminant (units) | Site | MCL | MCLG | Level
Found | Range | Sample Date (if prior to 2018) | Violation | Typical Source of
Contaminant | |-----------------------------|------|-----|------|----------------|-------|--------------------------------|-----------|----------------------------------| | RADIUM, (226 + 228) (pCi/l) | | 5 | 0 | 1.5 | 1.5 | 6/10/2014 | No | Erosion of natural deposits | # **Additional Health Information** If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Rib Lake Waterworks is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at www.epa.gov/safewater/lead. # Other Compliance Violation of the Terms of a Variance, Exemption, or Administrative or Judicial Order None Noncompliance with Recordkeeping and Compliance Data None #### **Additional Information** As you can see by the tables, the Rib Lake Water System had no violations. You can be assured that your drinking water meets or exceeds all Federal and State requirements. In order to maintain a safe and dependable water supply we sometimes need to make improvements that will benefit all of our customers. These improvements are sometimes reflected as rate structure adjustments. Thank you for understanding. The current rates have been attached to the back of this document for your information. We ask that all of our customers help us protect our water sources. Please report any activity that you may see that can affect water quality in both Water and Wastewater. Thank you. ### VILLAGE OF RIB LAKE WATER AND SEWER RATES #### WATER RATES ### EFFECTIVE MARCH 17, 2017 #### Quarterly service charge: | 5/8 inch & 3/4 inch meter - | \$ 25.34 | 4 inch meter - | 182.34 | |-----------------------------|----------|-----------------|--------| | 1 inch meter - | 30.39 | 6 inch meter - | 253.24 | | 1 ½ inch meter - | 43.90 | 8 inch meter - | 337.65 | | 2 inch meter - | 67.53 | 10 inch meter - | 455.83 | | 3 inch meter - | 121.56 | 12 inch meter - | 577.39 | #### Volume Charge: First 30,000 gallons used each quarter - \$4.86 per 1,000 gallons Next 170,000 gallons used each quarter - \$4.24 per 1,000 gallons Over 200,000 gallons used each quarter - \$4.01 per 1,000 gallons #### **SEWER RATES** ### EFFECTIVE MARCH 17, 2017 | Minimum Quarterly Charge 5,000 gals. or less: | e | Over 5,000 gals. \$14.26 per 1,000 gals. Plus Quarterly Customer Charge by meter size: | | | |---|--------|--|-----------------|--| | 5/8 inch & 3/4 inch meter - | 128.71 | 5/9 in al. 8-3/in-1 | | | | | 120.71 | 5/8 inch & 3/4 inch meter - | 57.41 | | | 1 inch meter - | 171.24 | 1 inch meter - | 99.94 | | | 1 ½ inch meter - | 241.26 | 1½ inch meter - | 169.96 | | | 2 inch meter - | 326.26 | 2 inch meter - | 254.96 | | | 3 inch meter - | 523.81 | 3 inch meter - | 452.51 | | | 4 inch meter - | 806.40 | | Management Tree | | | 4 men meter - | 800.40 | 4 inch meter - | 735.10 | |